Integrated Services Digital Network

ISDN, which stands for Integrated Services Digital Network, is a system of digital phone connections which has been available for over a decade. This system allows voice and data to be transmitted simultaneously across the world using end-to-end digital connectivity.
With ISDN, voice and data are carried by bearer channels (B channels) occupying a bandwidth of 64 kb/s (bits per second). Some switches limit B channels to a capacity of 56 kb/s. A data channel (D channel) handles signaling at 16 kb/s or 64 kb/s, depending on the service type. Note that, in ISDN terminology, "k" means 1000 (103), not 1024 (210) as in many computer applications (the designator "K" is sometimes used to represent this value); therefore, a 64 kb/s channel carries data at a rate of 64000 b/s. A new set of standard prefixes has recently been created to handle this. Under this scheme, "k" (kilo-) means 1000 (103), "M" (mega-) means 1000000 (106), and so on, and "Ki" (kibi-) means 1024 (210), "Mi" (mebi-) means 1048576 (220), and so on.
(An alert reader pointed out some inconsistencies in my use of unit terminology throughout this Tutorial. He also referred me to a definitive web site. As a result, I have made every effort to both conform to standard terminology, and to use it consistently. I appreciate helpful user input like this!)
There are two basic types of ISDN service: Basic Rate Interface (BRI) and Primary Rate Interface (PRI). BRI consists of two 64 kb/s B channels and one 16 kb/s D channel for a total of 144 kb/s. This basic service is intended to meet the needs of most individual users.
PRI is intended for users with greater capacity requirements. Typically the channel structure is 23 B channels plus one 64 kb/s D channel for a total of 1536 kb/s. In Europe, PRI consists of 30 B channels plus one 64 kb/s D channel for a total of 1984 kb/s. It is also possible to support multiple PRI lines with one 64 kb/s D channel using Non-Facility Associated Signaling (NFAS).
H channels provide a way to aggregate B channels. They are implemented as:
H0=384 kb/s (6 B channels)
H10=1472 kb/s (23 B channels)
H11=1536 kb/s (24 B channels)
H12=1920 kb/s (30 B channels) - International (E1) only
To access BRI service, it is necessary to subscribe to an ISDN phone line. Customer must be within 18000 feet (about 3.4 miles or 5.5 km) of the telephone company central office for BRI service; beyond that, expensive repeater devices are required, or ISDN service may not be available at all. Customers will also need special equipment to communicate with the phone company switch and with other ISDN devices. These devices include ISDN Terminal Adapters (sometimes called, incorrectly, "ISDN Modems") and ISDN Routers.
ISDN HISTORY:
The early phone network consisted of a pure analog system that connected telephone users directly by a mechanical interconnection of wires. This system was very inefficient, was very prone to breakdown and noise, and did not lend itself easily to long-distance connections. Beginning in the 1960s, the telephone system gradually began converting its internal connections to a packet-based, digital switching system. Today, nearly all voice switching in the U.S. is digital within the telephone network. Still, the final connection from the local central office to the customer equipment was, and still largely is, an analog Plain-Old Telephone Service (POTS) line.
A standards movement was started by the International Telephone and Telegraph Consultative Committee (CCITT), now known as the International Telecommunications Union (ITU). The ITU is a United Nations organization that coordinates and standardizes international telecommunications. Original recommendations of ISDN were in CCITT Recommendation I.120 (1984) which described some initial guidelines for implementing ISDN.
Local phone networks, especially the regional Bell operating companies, have long hailed the system, but they had been criticized for being slow to implement ISDN. One good reason for the delay is the fact that the two major switch manufacturers, Northern Telecom (now known as Nortel Networks), and AT&T (whose switch business is now owned by Lucent Technologies), selected different ways to implement the CCITT standards. These standards didn't always interoperate. This situation has been likened to that of earlier 19th century railroading. "People had different gauges, different tracks... nothing worked well."
In the early 1990s, an industry-wide effort began to establish a specific implementation for ISDN in the U.S. Members of the industry agreed to create the National ISDN 1 (NI-1) standard so that end users would not have to know the brand of switch they are connected to in order to buy equipment and software compatible with it. However, there were problems agreeing on this standard. In fact, many western states would not implement NI-1. Both Southwestern Bell and U.S. West (now Qwest) said that they did not plan to deploy NI-1 software in their central office switches due to incompatibilities with their existing ISDN networks.
Ultimately, all the Regional Bell Operating Companies (RBOCs) did support NI-1. A more comprehensive standardization initiative, National ISDN 2 (NI-2), was later adopted. Some manufacturers of ISDN communications equipment, such as Motorola and U S Robotics (now owned by 3Com), worked with the RBOCs to develop configuration standards for their equipment. These kinds of actions, along with more competitive pricing, inexpensive ISDN connection equipment, and the desire for people to have relatively low-cost high-bandwidth Internet access have made ISDN more popular in recent years.
Most recently, ISDN service has largely been displaced by broadband internet service, such as xDSL and Cable Modem service. These services are faster, less expensive, and easier to set up and maintain than ISDN. Still, ISDN has its place, as backup to dedicated lines, and in locations where broadband service is not yet available.
Advantages of ISDN:
SPEED:
SpeedThe modem was a big breakthrough in computer communications. It allowed computers to communicate by converting their digital information into an analog signal to travel through the public phone network. There is an upper limit to the amount of information that an analog telephone line can hold. Currently, it is about 56 kb/s bidirectionally. Commonly available modems have a maximum speed of 56 kb/s, but are limited by the quality of the analog connection and routinely go about 45-50 kb/s. Some phone lines do not support 56 kb/s connections at all. There were currently 2 competing, incompatible 56 kb/s standards (X2 from U S Robotics (recently bought by 3Com), and K56flex from Rockwell/Lucent). This standards problem was resolved when the ITU released the V.90, and later V.92, standard for 56 kb/s modem communications.
ISDN allows multiple digital channels to be operated simultaneously through the same regular phone wiring used for analog lines. The change comes about when the telephone company's switches can support digital connections. Therefore, the same physical wiring can be used, but a digital signal, instead of an analog signal, is transmitted across the line. This scheme permits a much higher data transfer rate than analog lines. BRI ISDN, using a channel aggregation protocol such as BONDING or Multilink-PPP, supports an uncompressed data transfer speed of 128 kb/s, plus bandwidth for overhead and signaling. In addition, the latency, or the amount of time it takes for a communication to begin, on an ISDN line is typically about half that of an analog line. This improves response for interactive applications, such as games.
Multiple Devices
Multiple DevicesPreviously, it was necessary to have a separate phone line for each device you wished to use simultaneously. For example, one line each was required for a telephone, fax, computer, bridge/router, and live video conference system. Transferring a file to someone while talking on the phone or seeing their live picture on a video screen would require several potentially expensive phone lines.
ISDN allows multiple devices to share a single line. It is possible to combine many different digital data sources and have the information routed to the proper destination. Since the line is digital, it is easier to keep the noise and interference out while combining these signals. ISDN technically refers to a specific set of digital services provided through a single, standard interface. Without ISDN, distinct interfaces are required instead.
Signaling:
Instead of the phone company sending a ring voltage signal to ring the bell in your phone ("In-Band signal"), it sends a digital packet on a separate channel ("Out-of-Band signal"). The Out-of-Band signal does not disturb established connections, no bandwidth is taken from the data channels, and call setup time is very fast. For example, a V.90 or V.92 modem typically takes 30-60 seconds to establish a connection; an ISDN call setup usually takes less than 2 seconds.
The signaling also indicates who is calling, what type of call it is (data/voice), and what number was dialed. Available ISDN phone equipment is then capable of making intelligent decisions on how to direct the call.
Interfaces:
In the U.S., the telephone company provides its BRI customers with a U interface. The U interface is a two-wire (single pair) interface from the phone switch, the same physical interface provided for POTS lines. It supports full-duplex data transfer over a single pair of wires, therefore only a single device can be connected to a U interface. This device is called an Network Termination 1 (NT-1). The situation is different elsewhere in the world, where the phone company is allowed to supply the NT-1, and thereby the customer is given an S/T interface.
The NT-1 is a relatively simple device that converts the 2-wire U interface into the 4-wire S/T interface. The S/T interface supports multiple devices (up to 7 devices can be placed on the S/T bus) because, while it is still a full-duplex interface, there is now a pair of wires for receive data, and another for transmit data. Today, many devices have NT-1s built into their design. This has the advantage of making the devices less expensive and easier to install, but often reduces flexibility by preventing additional devices from being connected.
Technically, ISDN devices must go through an Network Termination 2 (NT-2) device, which converts the T interface into the S interface (Note: the S and T interfaces are electrically equivalent). Virtually all ISDN devices include an NT-2 in their design. The NT-2 communicates with terminal equipment, and handles the Layer 2 and 3 ISDN protocols. Devices most commonly expect either a U interface connection (these have a built-in NT-1), or an S/T interface connection.
Devices that connect to the S/T (or S) interface include ISDN capable telephones and FAX machines, video teleconferencing equipment, bridge/routers, and terminal adapters. All devices that are designed for ISDN are designated Terminal Equipment 1 (TE1). All other communication devices that are not ISDN capable, but have a POTS telephone interface (also called the R interface), including ordinary analog telephones, FAX machines, and modems, are designated Terminal Equipment 2 (TE2). A Terminal Adapters (TA) connects a TE2 to an ISDN S/T bus.
Going one step in the opposite direction takes us inside the telephone switch. Remember that the U interface connects the switch to the customer premises equipment. This local loop connection is called Line Termination (LT function). The connection to other switches within the phone network is called Exchange Termination (ET function). The LT function and the ET function communicate via the V interface.

Comments